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biological response. Adsorption, being largely a surface phenomenon and characterized 
by weak binding forces and burst release, is not useful in producing spatial distributions 
and/or gradients of biomolecules. Coprecipitation involves adding the protein into the 
saturated calcium–phosphate solution, resulting in a heterogeneous matrix consisting of 
both mineral and protein being simultaneously precipitated onto the substrate. It is pos-
sible to distribute single or multiple molecules over sections or the entire thickness of the 
coating by varying the time periods of mineralization and coprecipitation, thus producing 
gradients of bioactive molecules within the biomaterial (Luong et al. 2006) (Figure 1.5). 
Further, since the precipitation occurs at ambient temperatures, loss in biological activity 
of the protein can be minimized.

Effect of Protein Addition on BLM Formation

Bovine serum albumin (BSA) is often used as a model protein to understand the influence 
of proteins on mineral nucleation and growth. Addition of BSA to SBF causes a delay in 
the mineral nucleation and growth, indicating that BSA inhibits these processes (Luong 
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FiGuRe 1.5
Images through the thickness of the mineral layer containing FITC-labeled BSA taken using confocal micros-
copy. Spatial distribution of the protein through the thickness of the mineral layer is exhibited for the follow-
ing incorporation techniques: (a) 6-day coprecipitation, (b) 3-day mineralization, 3-day adsorption, (c) 3-day 
mineralization, 3-day coprecipitation, (d) 3-day mineralization, 2-day coprecipitation, 1-day mineralization. 
Fluorescence can be seen where coprecipitation or adsorption has occurred. Control over the spatial distribu-
tion of the protein is shown by the presence of fluorescence through the thickness of the mineral for the differ-
ent coprecipitation groups. (Reprinted from Luong et al., Biomaterials, 27(7), 1175–1186, 2006, with permission 
from Elsevier.)
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et al. 2006). These inhibitory effects are stronger when the BSA is in solution as compared 
to being preadsorbed onto the substrate (Areva et al. 2002). Also, the stage at which the 
protein is included affects the extent of inhibition in a concentration-dependent manner. 
Increasing BSA concentration causes an increase in induction periods for apatite nucle-
ation. Addition of low concentrations of BSA (<10 g/l) during the growth phase causes an 
increase in the growth rate of the crystals, whereas higher concentrations (>10 g/l) inhibit 
the growth rate (Combes, Rey, and Freche 1999). Although the exact mechanism by which 
coprecipitation occurs is not completely understood and may differ from protein to pro-
tein, these results suggest that proteins may modulate apatite formation by adsorbing to 
the initially formed nuclei and stabilizing them by causing a decrease in interfacial energy 
between the crystal and solution. At low concentrations, there is no sufficient protein to 
coat the entire mineral surface, allowing the nuclei to grow quickly. At higher concentra-
tions due to coverage of the mineral surface by the protein molecules, growth is prevented 
(Combes and Rey 2002).

Mineral crystals nucleated in the presence of BSA are smaller in size and less crystalline 
compared to mineral formed in the absence of BSA (Liu et al. 2001; Combes and Rey 2002). 
The morphology of the mineral is also affected; protein-free SBF forms sharp platelike 
mineral crystals that are rounded in the presence of BSA (Luong et al. 2006; Liu et al. 2001) 
(Figure 1.2). Coprecipitating BSA onto a premineralized surface causes higher quantities 
of BSA to be loaded, which has been attributed to ability of the negatively charged BSA 
to interact with the positively charged Ca2+ ions. The BSA is attracted to the Ca2+ ions in 
the preliminary mineral layer, causing it to be incorporated into the mineral, which then 
attracts the Ca2+ ions from solution, resulting in a cyclical growth process (Luong et al. 
2006; Liu et al. 2001). This interaction of BSA with Ca2+ ions is confirmed by slower release 
of Ca2+ ions from coatings formed by coprecipitation with BSA as compared to that in the 
absence of BSA (Liu et al. 2003).

The above findings show that coprecipitation can be used to integrate proteins into the 
mineral layer, with their subsequent release being dependent primarily on the rate of dis-
solution of the mineral. The interaction of each protein with different types of mineral is 
dependent on several factors including the size, concentration, and charge of the protein, 
and its influence on the mineral characteristics such as size and crystallinity.

Applications of Protein Coprecipitation in Bone Tissue Engineering

Coprecipitation has been used to incorporate ECM proteins, enzymes, and drugs into bio-
mimetic calcium phosphate coatings. Bone analogs have been produced by coprecipitation 
of collagen I and mineral onto PLLA substrates using a highly concentrated SBF solution 
such as 5XSBF. These coatings are capable of enhancing proliferation and differentiation 
of Saos-2 cells (human osteosarcoma cell line) in vitro (Chen et al. 2008). Coprecipitation 
has also been used to incorporate enzymes such as amylase and lysozyme into BLM coat-
ings on starch-based polymers (Leonor et al. 2003). These materials can be potentially 
used as stimulus-responsive scaffolds, undergoing gradual degradation by the incorpo-
rated enzyme over time (Martins et al. 2009). Antibiotics such as tobramycin have also 
been integrated into biomimetic Ca–P coatings on titanium implants and hinder bacterial 
growth. Biomimetically coated implants that are coprecipitated with antibiotics not only 
possess the osteoconductive properties of BLM coatings, but are also capable of preventing 
postoperative infections (Stigter, de Groot, and Layrolle 2002).

Cell–matrix interactions in the natural bone environment orchestrate complex growth 
factor release profiles that help control bone resorption and formation. TGF-β1 is present 
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in high concentrations during early fracture repair processes, but levels off in later stages, 
eliciting specific responses resulting from these concentration changes. For instance, in 
the early stages of repair, TGF-β1 promotes division of fibroblasts, osteoblast recruitment, 
and differentiation, whereas in later stages, it promotes osteoclastogenesis. Therefore, a 
temporally graded administration of TGF-β1 would enhance the repair and regeneration 
process. Similarly, BMP2 promotes chemotaxis and cell proliferation at low concentrations 
and cell differentiation and bone formation at high concentrations (Allori, Sailon, and 
Warren 2008). Likewise, a pulsatile delivery of BMP2 may be optimal for tissue regenera-
tion strategies.

Coprecipitation can tailor the administration of growth factors and bioactive molecules 
to control their release kinetics and the rate of tissue regeneration. For example, rat bone 
marrow cells cultured on titanium alloys coated with biomimetically precipitated BLM 
and BMP-2 showed a significant increase in bone formation compared to adsorption 
(Hunter and Goldberg 1994). This method of growth factor incorporation into the min-
eral matrix allowed for a sustained release over a period of 5 weeks as compared to the 
1-week burst release of adsorbed growth factor that only produced a sporadic osteogenic 
response. Although the same amount of BMP-2 was used for both methods, BMP incorpo-
rated via coprecipitation showed more of a sustained osteogenic response (Liu, de Groot, 
and Hunziker 2004). Similarly, insulin-like growth factor-1 (IGF-1) coprecipitated with 
BLM on PLGA scaffolds showed a sustained and linearly increasing release profile over a 
30-day period (Jayasuriya and Shah 2008).

A complex biological response such as tissue regeneration is a result of the coordi-
nated cellular events involving the sequential secretion of multiple growth factors. 
Coprecipitation and surface immobilization could be used to customize and mimic these 
coordinated events. For example, TGF-β1 also regulates gene expression of other growth 
factors such as VEGF. In a rat mandibular orthotopic model, TGF-β and VEGF mRNA 
transcription increased 2.5-fold only 3 h after surgery and TGF-β and VEGF expression 
increased 3-fold compared to baseline levels for 4 weeks after wound healing commenced 
(Allori, Sailon, and Warren 2008). Incorporation of multiple growth factors into a single 
construct has the potential to enhance bioactivity. For example, the delivery of TGF-β and 
BMP-2 delivery from alginate gels resulted in greater bone tissue formation after 6 weeks, 
but no significant changes were observed even 22 weeks after implantation when they 
were administered alone (Simmons et al. 2004).

Coprecipitation provides the flexibility to tailor release profiles since the concentra-
tions of different growth factors could be graded separately through the thickness of 
the coating. A similar coordinated response can be achieved by coupling coprecipita-
tion of proteins with surface immobilization methods; the adsorbed molecule could be 
released in a burst profile and the coprecipitated molecule could be delivered in a sus-
tained fashion.

Coprecipitation of dna and Mineral

DNA coprecipitation allows the incorporation of nucleic acids into the biomimetically pre-
cipitated mineral layer at physiological conditions (Figure 1.6). Similar to growth factors, 
coprecipitation with mineral can be used to control the spatial distribution of DNA through 
the thickness of the coating. As the mineral layer degrades in physiological conditions, 
DNA will be released in a spatially and temporally controlled manner. Coprecipitation 
of mineral also improves the stiffness of soft substrate surfaces, which improves cellular 
uptake of DNA (Kong et al. 2005).
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The method of DNA application affects transfection efficiency. For example, adsorbed 
lipoplexes and coprecipitated lipoplexes show significantly different transfection efficien-
cies. Encapsulation of DNA in a calcium phosphate precipitate improves cellular uptake 
and produces an enhanced cellular response compared to lipoplexing techniques (Jordan 
1996). DNA-lipoplexes coprecipitated with BLM show higher transfection efficiency com-
pared to adsorbed lipoplexes, and coprecipitated naked DNA. This improved transfec-
tion efficiency arises from enhanced cellular uptake and protection from degradation as 
a result of cationic lipid complexation, along with the higher availability of apatite at the 
surface controlling the rate of release (Luong, McFalls, and Kohn 2009).

Transfection efficiency can also be improved by altering the ionic concentrations of 
SBF. For instance, removing Mg ions from the solution improves DNA incorporation and 

DNA Lipid Merged
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g) h) g/h)

i) j) i/j)

FiGuRe 1.6
Fluorescence images of DNA and lipid agent components from representative samples from each of the fol-
lowing groups. (a–b) Mineralized controls, (c–d) plasmid DNA incorporated into PLGA, (e–f) plasmid DNA 
coprecipitated with mineral, (g–h) plasmid DNA-lipoplex adsorbed to mineralized films, (i–j) plasmid DNA-
lipoplex coprecipitated with mineral. Distribution of both the plasmid DNA and the lipid transfection agent on 
the bone-like mineral was demonstrated by the colocalization of the fluorescent staining in the adsorption and 
coprecipitation groups and the absence of staining in the mineralized controls. Scale bars represent 100 um. 
(Reprinted from Luong et al., Biomaterials, 30(36), 6996–7004, 2009, with permission from Elsevier.)
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facilitates efficient endocytosis (Shen, Tan, and Saltzman 2004). Surface morphology and 
DNA retention at the mineral surface play an important role in improving transfection 
efficiency. SBF concentrations and coprecipitation time can be altered to control the dis-
solution rate of the mineral layer and subsequent release of DNA to improve transfection 
efficiency (Luong, McFalls, and Kohn 2009).

Drawbacks of Using BLM

Although there is merit to using BLM coatings, there are also difficulties that may be 
encountered that need to be acknowledged. Challenges that arise when using SBF to coat 
implants, especially porous and porous-coated implants and scaffolds, include controlling 
coating thickness, preserving substrate stability during functionalization, and translation 
to industrial-scale processes. As with all apatite coating techniques, the thickness of the 
BLM layer on 3-D scaffolds needs to be controlled to maintain sufficient porosity for mass 
transport and angiogenesis. An implant coating that is too thick can occlude pores, which 
would interfere with tissue perfusion and vascular infiltration in vivo. Excessively thick 
mineral layers can result in delamination of the coating from the underlying substrate.

Substrate surface functionalization is carried out before incubation in SBF to obtain a nega-
tively charged surface for calcium nucleation. However, prolonged treatment for function-
alization can damage the underlying substrate. For instance, PLGA/PLLA materials etched 
with sodium hydroxide can undergo considerable hydrolysis resulting in loss of structure, 
thereby compromising mechanical stability. The necessity for functionalization creates some 
limitations over the types of substrates that can be used for biomimetic precipitation (Table 
1.2) as well as the types of methods that could be used to functionalize the surface.

Achieving industrial-scale batch processing could be a problem when working with SBF. 
The SBF solution needs to be replenished periodically to maintain pH and ion concentra-
tions near saturation, which would be complex in an industrial setting. Batch processing 
implants in large volumes of liquid under sterile conditions to prevent contamination can 
also prove to be difficult.

One main disadvantage of using coprecipitation to create organic/inorganic hybrid 
materials is the low efficiency of biomolecule incorporation. Although biomolecule reten-
tion on BLM is higher with coprecipitation than with adsorption, only about 10% loading 
can be achieved with coprecipitation. Therefore coprecipitation requires large concentra-
tions of biomolecules to elicit a desired response, which becomes expensive for growth 
factor administration.

Conclusions

Bone is a complex and dynamic composite tissue that consists of both inorganic and organic 
phases, supporting cellular adhesion, proliferation, and differentiation. The technique of 
biomimetic calcium phosphate precipitation attempts to simulate aspects of this complexity 
by forming a BLM coating on the surface of natural and synthetic substrates. This mineral 
layer makes a biomaterial more osteoconductive, as well as enhances mechanical strength 
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and stiffness, which are important requirements for load-bearing implants. Inductivity 
can be integrated into this conductive approach by the incorporation of biomolecules such 
as proteins, peptides, and DNA to generate inorganic/organic hybrids that are capable of 
facilitating and enhancing cell–matrix interactions.

These hybrids can be synthesized using adsorption or coprecipitation techniques, or a 
combination of both depending on the type of response desired. Protein engineering can be 
utilized to recruit bone cell populations initially to implant surfaces, by designing peptides 
that bind specifically with strong affinity to both BLM materials and cells. These peptides 
mimic naturally found bone ECM adhesive proteins, such as osteopontin and bone sialo-
protein, and mediate cell adhesion to apatite. Coprecipitating mineral and biomolecules can 
provide the signaling cues required for cell proliferation and differentiation, leading to new 
bone formation. Coprecipitation also provides control over spatial and temporal release of 
the biomolecules, allowing for multiple growth factor delivery during different stages of 
cellular differentiation, a concept similar to growth factor sequestration by the ECM in vivo. 
A blend of both adsorption and coprecipitation, in conjunction with biomimetically precipi-
tated apatite, can be utilized to develop bone analogs that mimic the natural environment 
with greater precision, thereby ensuring controlled and uniform tissue regeneration.
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