External Bone Size Is a Key Determinant of Strength-Decline Trajectories of Aging Male Radii

Erin MR Bigelow,1 Daniella M Patton,1,2 Ferrous S Ward,1,2 Antonio Ciarelli,1,5 Michael Casden,3 Andrea Clark,1 Robert W Goulet,1 Michael D Morris,4 Stephen H Schlecht,5 Gurjit S Mandair,6 Todd L Bredbenner,7 David H Kohn,2,6 and Karl J Jepsen1,2

1Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
2Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
3School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
4College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
5Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
6Biological and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
7Department of Mechanical and Aerospace Engineering, University of Colorado–Colorado Springs, Colorado Springs, CO, USA

ABSTRACT

Given prior work showing associations between remodeling and external bone size, we tested the hypothesis that wide bones would show a greater negative correlation between whole-bone strength and age compared with narrow bones. Cadaveric male radii (n = 37 pairs, 18 to 89 years old) were evaluated biomechanically, and samples were sorted into narrow and wide subgroups using height-adjusted robustness (total area/bone length). Strength was 54% greater (p < 0.0001) in wide compared with narrow radii for young adults (<40 years old). However, the greater strength of young-adult wide radii was not observed for older wide radii, as the wide (R² = 0.565, p = 0.001), but not narrow (R² = 0.0004, p = 0.944) subgroup showed a significant negative correlation between strength and age. Significant positive correlations between age and robustness (R² = 0.269, p = 0.048), cortical area (Ct.Ar; R² = 0.356, p = 0.019), and the mineral/matrix ratio (MMR; R² = 0.293, p = 0.037) were observed for narrow, but not wide radii (robustness: R² = 0.015, p = 0.217; Ct.Ar; R² = 0.095, p = 0.245; MMR: R² = 0.086, p = 0.271). Porosity increased with age for the narrow (R² = 0.556, p = 0.001) and wide (R² = 0.321, p = 0.022) subgroups. The wide subgroup (p < 0.0001) showed a significantly greater elevation of a new measure called the Cortical Pore Score, which quantifies the cumulative effect of pore size and location, indicating that porosity had a more deleterious effect on strength for wide compared with narrow radii. Thus, the divergent strength–age regressions implied that narrow radii maintained a low strength with aging by increasing external size and mineral content to mechanically offset increases in porosity. In contrast, the significant negative strength–age correlation for wide radii implied that the deleterious effect of greater porosity further from the centroid was not offset by changes in outer bone size or mineral content. Thus, the low strength of elderly male radii arose through different biomechanical mechanisms. Consideration of different strength–age regressions (trajectories) may inform clinical decisions on how best to treat individuals to reduce fracture risk. © 2019 American Society for Bone and Mineral Research.

KEY WORDS: BONE; BIOMECHANICS; STRENGTH; BIOMECHANICAL MECHANISMS; AGING; RADII; MALE; PERIOSTEAL EXPANSION

Introduction

The decline in bone strength with aging increases the risk of fracturing1 and compromises overall health, wellness, and independence.2,3 Thus, reducing fragility fractures remains an important public health goal.4 The reduced bone strength of elderly individuals arises from modeling and remodeling events that affect bone morphology, microstructure, and material properties.5–9 Many of these structural and material changes are captured clinically as reductions in areal bone mineral density (aBMD). The age-related decline in strength varies between sexes and among ethnicities.10–14 However, little is understood about why some individuals within the same sex and ethnicity show greater losses in bone strength than others, and whether this interindividual variation in bone strength decline is influenced by peak bone traits.

Recently, we reported that 14-year changes in femoral neck mass and structure differed significantly among midlife women, depending on baseline external bone size.15 Women with narrow femoral necks showed small reductions in BMC, but large increases in bone area, whereas women with wide femoral necks showed large reductions in BMC, but only small compensatory
increases in bone area. Similar associations between baseline bone area and age-related changes in mass and area have also been reported for men. These studies, which were limited to data derived from hip DXA images, did not report the structural changes contributing to the differences in BMC loss or test whether the external-size dependent changes in BMC and area lead to different bone strength-decline trajectories. The greater loss in BMC for wide bones was consistent with prior work showing a positive association between remodeling and external bone size. The mechanism responsible for the association between remodeling and external bone size remains unknown. However, because remodeling underlies age-related bone loss, we postulated that increases in porosity and reductions in bone strength with aging would depend on external bone size. Herein, we tested the hypothesis that wide human long bones would show a greater negative correlation between whole-bone strength and age compared with narrow bones. We also examined morphological and material traits to identify the biomechanical mechanisms that would explain the different strength-decline trajectories.

Materials and Methods

Samples
Unfixed cadaver radii (n = 37 pairs) from white male donors with no known medical conditions that would affect bone aging were acquired from the University of Michigan Anatomical Donations Program (Ann Arbor, MI, USA), Science Care (Phoenix, AZ, USA), and Anatomy Gifts Registry (Hanover, MD, USA). Human tissue use and handling was approved by the University of Michigan Institutional Biosafety Committee and declared exempt by the Institutional Review Board. The diaphysis was examined because the tubular structure allowed us to use engineering principles to derive biomechanical mechanisms underlying changes in bone strength. Left radii were assessed for cross-sectional morphological, whole-bone mechanical properties, and bone length (L), which was measured from the distal articular surface to the proximal point of the radial head. Right radii were cut with a diamond-coated pathology saw (Exakt 312; Exakt Technologies, Oklahoma City, OK, USA) into five 5-mm thick sections immediately proximal to the midshaft to assess porosity, ash content, and composition (Raman spectroscopy). A 60-mm-long section of the right radius located distal to the midshaft was used to assess tissue-level mechanical properties. One donor had only a single radius available for testing; this radius was used to assess porosity and composition, resulting in 37 samples for composition and porosity and 36 samples for whole-bone mechanical testing.

Because handedness of the donors was unknown, the left hand was used to assess whole-bone strength, as the nondominant hand is often used clinically for diagnostic purposes and given the prevalence of right-handed individuals. The nondestructive assessment of morphology by pQCT was conducted on the left radii. Destructive tests (ashing, porosity, Raman spectroscopy, tissue-level mechanical properties) were conducted on the right radii. This strategy minimized the impact of handedness when assessing the contribution of morphology to whole-bone strength. Although bone morphology is affected by handedness, it is less clear whether tissue-level material properties and composition are affected by handedness. It was not practical to conduct all analyses on the left radii given that the destructive assays would have had to been done after the bones were fractured, which can affect many of the traits examined (e.g., Raman, tissue-level mechanical properties).

Cross-sectional morphology
Cross-sectional morphology and cortical tissue-mineral density (Ct.TMD) were quantified from 2D images acquired at the midshaft of the left radii using pQCT (XCT 2000L, Stratec Medizintechnik, Pforzheim, Germany) and analyzed using ImageJ and MomentMacro. Images were acquired at a 161-micron pixel size and thresholded to delineate bone from nonbone voxels. Morphological traits included total area (T.Ar), cortical area (Ct.Ar), marrow area (Ma.Ar), and the area moments of inertia about the anteroposterior (I(ap)) and mediolateral axes (I(ml)). Robustness (a measure of external bone size) was calculated as T.Ar/Le. Grayscale values were converted to Ct.TMD for each sample using calibration constants. A daily quality assurance scan confirmed that the difference between measured and calibrated density values was less than 1%.

Whole-bone mechanical properties
Left radii were loaded to failure in four-point bending in the medial (ulnar) to lateral (radial) direction (lateral quadrant in tension), which coincided with the natural curvature of the radius. Sample rotation during testing was prevented by embedding the metaphyses in acrylic resin-filled square channels, aligning the faces of the squared-ends using a custom-machined fixture, and testing the samples between two walls that were parallel to the test fixture. The lower loading points were located at 25% and 75% of bone length, and the upper points were set at 33% and 67% of the lower span length. Bones were preloaded to 40 N, subjected to three preyield load-unload cycles of 400 N to 500 N to settle the bone into the test fixture, and then loaded to failure at 0.1 mm/s. Whole-bone mechanical properties were calculated from the load-deflection curves and adjusted for text fixture geometry to generate the bending stiffness (EI, Nm²), maximum bending moment (Nm), postyield deflection (PYD; 1/m), and work-to-fracture (N). Yield was defined as the point where a 10% reduction of the stiffness regression line intersected the load-deflection curve. Whole-bone strength refers to the maximum bending moment. The loading protocol was validated by subjecting aluminum cylinders to the same load conditions and confirming that the derived material modulus was within 1% of textbook values.

Porosity
The age-related remodeling process that is responsible for increases in porosity varies radially within a cross-section. The region adjacent to the endocortical surface shows large pores reflecting increased osteoclastic resorption, coalescence of adjacent pores, and little to no osteoblastic infilling. In contrast, pores in the midcortical region tend to show a slight increase in size with aging, reflecting the early phase of intracortical bone loss. To address this spatial bone loss pattern, we first quantified porosity for the entire cross-section because these measures should reflect the overall increase in porosity with aging and should be related to changes in whole-bone strength. Second, we quantified porosity for the midcortical region to test if there was evidence that these pores were larger in the wide bones compared with the narrow bones. The sections used for porosity were macerated overnight in a warm,
oxidative detergent solution (OxiClean, Church & Dwight Co., Trenton, NJ, USA) to remove fat and soft tissues, then rinsed and sonicated with PBS, and dried to constant weight at 37°C. The sections were scanned using a nanoCT system (nanotom-s; phoenix|x-ray, GE Sensing & Inspection Technologies, GmbH; Wunstorf, Germany) with consistent acquisition conditions (tungsten target, 0.3-mm aluminum filter, 2000-ms timing, three averages, one skip, 120 kV, 140 μA). Images were reconstructed at 6-μm voxel size using datos|x reconstruction 2.1 (phoenix|x-ray, GE Sensing & Inspection Technologies, GmbH). Three cross-sections spanning the 5-mm thick image volume were analyzed for each sample using ImageJ, which included contrast enhancement, thresholding (auto local threshold macro, v1.6), and stray pixel removal. Lacunae were excluded by filtering voids less than 5 pixels in size. Voids that were 80% surrounded by bone and open to the endosteal surface were manually closed to capture as many pores associated with the remodeling process as possible (Fig. 1A).

The area and location (x–y coordinates of the geometric centroid) were determined for each pore. Derived measures for the entire cross-section included pore density (number of pores/cortical area), average pore area, and porosity (total pore area/cortical area). Overall porosity measures were averaged over the three cross-sections. The second set of porosity measures was assessed for eight 1-mm² circular midcortical ROIs that were located at 45-degree radial intervals relative to the anterior, posterior, medial, and lateral axes. Midcortex porosity was assessed for a single cross-section and included pores that were located fully within the ROI, thereby excluding the large pores located near the endosteum.

A new parameter called cortical pore score (CPSplane = ΣAi di2) was developed to quantify the cumulative effect of pores on bone strength (Fig. 1A). Because whole-bone strength is related to the third power of bone width, the impact of individual pores on whole-bone strength depends on pore area (Ai) and the distance of the pore to the bending plane (di), which was calculated as the neutral axis based on standard beam theory. CPSplane was assessed on an absolute basis and as a percentage of the moment of inertia calculated after all pores were filled (IΜULTMED). To test how CPS calculated relative to a bending plane (CPSplane) correlated with CPS calculated without assuming a loading direction, we also calculated CPSpoint where di was measured as the distance of each pore centroid to the geometric centroid of the bone cross-section, which was calculated relative to the thresholded cross-section, including marrow and pores.

A validation study comparing the processed image with the

Fig. 1. (A) Schematic illustrating the two ways that the Cortical Pore Score was calculated from the nanoCT images (left: CPSplane, right: CPSpoint). Inset illustrates how voids adjacent to the marrow space were manually closed so they were included in the porosity analysis (arrows). (B) The flow chart shows known associations between physical bone traits and whole-bone strength. These associations helped inform decisions on the selection of traits used in the multivariate regression analysis and for establishing the biomechanical pathways responsible for different strength-decline trajectories. The flow chart shows three trait categories that contribute to bone strength. These include whole-bone mechanical properties, morphology, and tissue-level mechanical properties. The wide borders indicate the traits used in the multivariate regression analysis.
machined from the midcortex, closer to the periosteal surface. The beams were loaded to failure at 0.05 mm/s in four-point bending while submerged in 37°C PBS with added calcium, as described previously. Load and deflection were converted to stress and strain using bending equations that take yielding into consideration. Tissue-level mechanical properties, which included tissue-modulus, strength, postyield strain (PYS), and energy-to-failure were averaged if more than one sample was machined from the radius. Tissue-level strength, which differs from whole-bone strength, refers to the maximum stress calculated for the beams.

Statistical analysis

Whole-bone mechanical properties of the male radii have been previously reported, but are being examined herein in the context of subgroup analysis and biomechanical mechanisms that were not tested previously. Traits that failed the D’Agostino and Pearson Omnibus Normality Test were logarithm-transformed. First, a partial linear regression analysis was conducted between each porosity measure and robustness while accounting for age to test whether male radii showed associations between porosity and external bone size similar to previous studies. Second, the data were sorted into narrow (n = 18) and wide (n = 19) subgroups using height-adjusted robustness, which is the residual calculated from a linear regression between robustness and height. Only two subgroups were examined to maximize statistical power. The data were rank-ordered for height-adjusted robustness and the middle three samples of each subgroup were excluded from the statistical analysis to delineate the two subgroups on a practical and statistical basis. We excluded these samples because designating the middle samples as narrow or wide appeared somewhat arbitrary as it depended on the number of samples that were included in the study or whether the samples were rank ordered based on the absolute value of robustness rather than height-adjusted robustness. Linear regression analyses were conducted between all properties and age, and the slope and y-intercepts of the narrow and wide subgroups were compared using ANCOVA (GraphPad Prism v. 7.04; GraphPad Software, La Jolla, CA, USA). A sensitivity analysis was conducted by repeating the regression analyses with the data segregated into tertiles (comparing the narrow and wide tertiles) and by systematically excluding 0, 1, 2, or 3 rank-ordered samples from each subgroup.

A multivariate regression analysis was conducted to identify a set of traits that predicted whole-bone strength using the entire dataset (SPSS Statistics v. 24.0; IBM Corp., Armonk, NY, USA). The multivariate regression model was systematically reduced by eliminating traits that did not contribute significantly to whole-bone strength until the adjusted R^2 value was maximized and all variance inflation factors (VIFs) were below 5. We used this systematic approach rather than a stepwise regression analysis because engineering principles provide a prescribed assembly of factors that contribute to whole-bone strength (Fig. 18) and the variable-reduction process provides insight into the relative importance of individual traits to whole-bone strength. The model was initiated by choosing morphological and material traits from among the three categories shown in Fig. 18. Age and height were included in all models. Weight contributes significantly to bone morphology during growth, resulting in adults and subadults showing strong associations between weight and bone morphology. However, weight...
was not considered a reliable adjustment factor for our analysis of bone strength across the lifespan because the weight reported at time of death is highly variable, depending on the nature and length of prior illness, and may not reflect the weight magnitude that defined bone morphology and strength during growth. However, height remains relatively constant and more invariant to lifestyle changes and illness. As such, body-size adjustments included measures of bone length and body height. For whole-bone mechanical properties, PYD was included because reductions in PYD are associated with reduced strength.\(^{(37,42)}\) For morphology, robustness and Ct.Ar were included instead of moment of inertia to allow us to break out specific aspects of the morphology (eg, external size, the amount of bone) to more systematically investigate why the strength–age regressions differ between the narrow and wide subgroups. Moment of inertia, although highly correlated with strength, is a more complicated morphological trait as it reflects both the external size of bone and the amount of bone, albeit in nonlinear ways (ie, external size is more heavily weighted in the calculation of moment of inertia than the amount of bone). For tissue-level mechanical properties, we included tissue-strength, porosity, MMR, and Xlinks ratio because these traits are thought to contribute to whole-bone strength. Alternate traits were substituted when one existed (eg, tissue-level PYS was substituted for whole-bone PYD, ash content was substituted for MMR, etc.) to test whether the multivariate regression outcomes (adjusted \(R^2, \text{VIFS}\)) were sensitive to omitted variables.

Results

Associations between porosity and external bone size

Donor ages and anthropometric traits are given in Table 1. A partial regression analysis was conducted to test whether porosity measures were associated with robustness while controlling for age (Table 2). Pearson correlation coefficients were significant (\(p < 0.05\)) or borderline significant (\(p < 0.10\)) for all porosity measures except pore density, indicating that narrow radii tended to have a lower overall porosity, lower midcortical porosity, smaller pore area, and smaller CPS\(_{\text{plane}}\) and CPS\(_{\text{point}}\), but no difference in pore density compared with wide radii. Log(CPS\(_{\text{plane}}\)) correlated significantly with Log(CPS\(_{\text{point}}\)) \((R^2 = 0.981, p < 0.001; \text{data not shown})\), suggesting that calculating CPS without assuming a bending plane (CPS\(_{\text{plane}}\)) was highly correlated with calculating CPS relative to the experimental bending plane used in this study (CPS\(_{\text{plane}}\)).

Associations between external bone size and body size

Male radii showed a nonsignificant correlation between robustness and height \((R^2 = 0.007, p = 0.611; \text{data not shown})\), even when adjusting for age \((R^2 = 0.014, p = 0.484)\). Rank ordering the samples without adjusting for height resulted in two samples that flipped from being designated as narrow versus wide. This outcome motivated the exclusion of the middle six samples for all regression analyses so the outcomes would be insensitive to the choice of body-size adjustment.

Whole-bone strength

Radii were loaded to failure in four-point bending to assess whole-bone strength (ie, maximum bending moment). A nonsignificant association was observed between whole-bone strength and age when all the data were included in a single regression (Fig. 2A). The data were sorted into narrow and wide subgroups using height-adjusted robustness. The average age (narrow: 45.2 ± 23.2 years; wide: 59.6 ± 21.9 years; \(p = 0.087\))

Table 1. Demographics and Anthropometric Traits for Male Donors (n = 37)

<table>
<thead>
<tr>
<th>Trait</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>54.3 ± 23.0</td>
<td>18–89</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>86.7 ± 26.5</td>
<td>49.9–151.5</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>253.9 ± 14.7</td>
<td>62.0–79.0</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.4 ± 8.0</td>
<td>16.7–47.0</td>
</tr>
<tr>
<td>Radius length (cm)</td>
<td>25.4 ± 1.5</td>
<td>22.2–28.6</td>
</tr>
</tbody>
</table>

Table 2. Pearson Correlation Coefficients Between Porosity Measures and Robustness After Controlling for Age

<table>
<thead>
<tr>
<th>Trait</th>
<th>(r)</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(total porosity)</td>
<td>0.290</td>
<td>0.082</td>
</tr>
<tr>
<td>Log(ave pore area)</td>
<td>0.441</td>
<td>0.006</td>
</tr>
<tr>
<td>Log(median pore area)</td>
<td>0.350</td>
<td>0.034</td>
</tr>
<tr>
<td>Log(pore density)</td>
<td>0.055</td>
<td>0.886</td>
</tr>
<tr>
<td>Log(CPS(_{\text{plane}}))</td>
<td>0.668</td>
<td>0.0001</td>
</tr>
<tr>
<td>Log(CPS(_{\text{point}}))</td>
<td>0.677</td>
<td>0.0001</td>
</tr>
<tr>
<td>Log(midcortex porosity)</td>
<td>0.362</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Fig. 2. (A) A nonsignificant association was found between maximum bending moment (whole-bone strength) and age when all the data were included in a single regression. (B) Sorting the data based on height-adjusted robustness (excluding middle 3 rank-ordered subjects per subgroup) showed a significant association for wide but not narrow radii and a significant difference between the slopes of the two regressions (ANCOVA).
weight (narrow: 80.4 ± 20.7 kg; wide: 90.7 ± 33.6 kg; p = 0.317), BMI (narrow: 25.7 ± 6.0 kg/m²; wide: 28.5 ± 9.9 kg/m²; p = 0.354), and height (narrow: 1.77 ± 0.09 m; wide: 1.78 ± 0.10 m; p = 0.698) were not statistically different between subgroups (Student’s t test). A significant negative correlation was observed between whole-bone strength and age for the wide but not the narrow subgroup (Fig. 2B). The slopes differed significantly between the subgroups (p = 0.017, ANCOVA), which was confirmed with a sensitivity analysis that varied the number of rank-ordered samples that were excluded from the analysis from zero to three per subgroup and when segregating the data into tertiles and comparing the most narrow and wide tertiles. Comparing strength values of young (<40 years) and older males (>65 years) between subgroups by two-way ANOVA showed significant effects because of age (p = 0.022), robustness (p < 0.0001), and the interaction between age and robustness (p = 0.005). The strength of young wide radii (70.31 ± 5.10 Nm, n = 5) was 54% greater (p < 0.0001, Tukey post hoc test) compared with young narrow radii (45.78 ± 9.72 Nm, n = 8). In contrast, the strength of older wide radii (53.21 ± 3.15 Nm, n = 6) was not significantly different (p = 0.647, Tukey post hoc test) compared with older narrow radii (47.93 ± 5.72 Nm, n = 4).

Bone morphology

Midshaft morphological traits were assessed and plotted against age to compare the trait–age regressions that may imply different structural changes between the narrow and wide subgroups. Significant positive correlations were observed between age and robustness, Ct.Ar, and IML for the narrow but not the wide subgroup (Fig. 3). Ma.Ar did not correlate significantly with age for either subgroup. The slope or y-intercept of the linear regressions differed between the subgroups for each of the morphological traits shown in Fig. 3A–D.

Porosity

Porosity measures were plotted against age and compared to determine if the amount and location of pores differed between the narrow and wide subgroups. Overall porosity and midcortical porosity correlated positively with age for the narrow and wide subgroups (Fig. 4A, B). Significant and borderline significant correlations were found between the narrow and wide subgroups, respectively (Fig. 4C). Neither subgroup showed a significant correlation between pore density and age (narrow: R² = 0.031, p = 0.531; wide R² = 0.039, p = 0.466; data not shown). The regression between log(CPSplane) and log(overall porosity) differed significantly between narrow and wide subgroups (Fig. 4D), indicating that CPSplane was significantly greater for a given porosity in wide compared with narrow radii, as expected. A significant positive correlation was found between log(CPSplane) and age for the narrow but not the wide subgroups (Fig. 4E), with the wide subgroup showing a significantly greater y-intercept compared with the narrow subgroup. This was confirmed when CPSplane was expressed as a percentage of IMLfilled, which is the moment of inertia relative to the applied bending loads calculated with all pores filled (Fig. 4F). CPSplane accounted for 2.7% to 9.5% of IML for the elderly narrow subgroup and 5.0% to 25.5% of IMLfilled for the elderly wide subgroup (data not shown).

Matrix composition

Raman spectroscopic measures were plotted against age and compared to determine if matrix composition differed between the narrow and wide subgroups. Linear regression analysis showed significant correlations with age for log(collagen disorder/order ratio) and lipid/matrix ratio for both subgroups (Fig. 5A, B). Significant positive associations between MMR and

Fig. 3. Linear regressions between (A) robustness, (B) cortical area, (C) narrow area, (D) moment of inertia (IML) and age differed between the narrow and wide subgroups.
log(hyp/pro ratio) and age were found for the narrow but not the wide subgroup (Fig. 5C, D). A significant correlation between ash content and age for the narrow ($R^2 = 0.355$, $p = 0.019$) but not wide ($R^2 = 0.026$, $p = 0.567$) subgroups (data not shown) confirmed the MMR outcomes. A significant negative correlation was found between log(Xlinks ratio) and age for the wide but not the narrow subgroup (Fig. 5E). Finally, mineral crystallinity did not correlate significantly with age for either subgroup (Fig. 5F).

Tissue-level mechanical properties

Tissue-level mechanical properties were assessed for all samples and the linear regressions were compared to test whether the wide subgroup would show a significantly greater decline in the strength-age regression compared with the narrow subgroup, similar to that observed at the whole-bone level. Tissue stiffness (modulus) did not show a significant correlation with age for either subgroup (Fig. 6A). However, tissue strength and energy-to-failure showed significant negative correlations with age for the wide but not the narrow subgroup. A significant negative correlation was found between tissue PYS and age for both subgroups.

Multivariate regression analysis

A multivariate regression analysis was conducted to identify the significant predictors of whole-bone strength. The initial group of traits predicted whole-bone strength with an adjusted R^2 of 0.768 ($p < 0.0001$; model 1, Table 3), but several VIFs exceeded 5. Replacing height with either weight or BMI resulted in both terms being eliminated in the first round as neither were significant predictors of strength. Systematically eliminating traits with nonsignificant contributions resulted in a model with age, height, robustness, porosity, and MMR (model 5, adj. $R^2 = 0.803$, $p < 0.0001$) and VIF below 2.7. Replacing MMR and porosity with Ct.TMD (model 6), which can be assessed noninvasively, improved the model (adj. $R^2 = 0.907$, $p < 0.0001$) with all VIFs below 1.6. The sensitivity of the model to the choice of traits was tested by replacing traits (eg, PYS for PYD, ash for MMR) or including omitted traits (eg, lipid/matrix ratio). This analysis resulted in models with similar adjusted R^2 values, but with slightly different components (data not shown). In general, the models included measures of external bone size, porosity, and mineralization in addition to age and height.
Discussion

The results of this study support the hypothesis that wide radii would show a more negative correlation between whole-bone strength and age compared with narrow radii (Fig. 2B). Male radii were sorted into narrow and wide subgroups using height-adjusted robustness to minimize body-size effects, consistent with our prior work. The 54% greater strength of young adult wide radii compared with narrow radii was expected and is thought to result from limitations in the adaptive process that occurs during bone growth. This strength gradient may help explain why young adults with increased fracture risk tend to have narrow bones. Importantly, the greater strength of young adult wide radii was lost with age, as both subgroups converged toward similar strength values after 65 years of age. Thus, the low strength of elderly male radii arose through different strength-decline trajectories: The narrow radii showed low strength for young adults that was maintained with age, whereas the wide radii showed high strength for young adults, much of which was lost with age. Whole bone strength of elderly individuals varies with many factors such as sex, ethnicity/race, weight loss and frailty, and rates of bone loss. The current study provided evidence that external bone size also affects the strength of elderly male radii by influencing bone strength-decline trajectories.

The biomechanical mechanisms that define how structural and material changes contributed to the different strength-decline trajectories (Fig. 7) were constructed based on the outcomes of the trait–age regressions (Figs. 3 through 6) and the multivariate regression analysis (Table 3), and contextualized with known associations among physical traits and whole-bone strength. The nonsignificant correlation between strength and age for the narrow subgroup appeared to result from increases in robustness, Ct.Ar, and mineralization (MMR) that mechanically offset increases in porosity. Thus, it appeared that external size and composition were adjusted to maintain strength in narrow radii across the age range examined. In contrast, the negative correlation between strength and age for wide radii appeared to occur because external size did not increase to mechanically offset increases in porosity and reductions in tissue strength. Thus, differences in the amount of periosteal expansion appeared to be a critical factor explaining the different strength-decline trajectories of the narrow and wide subgroups. Although the strength-decline trajectories were limited to data derived from cadaveric tissue, the different robustness–age regressions observed for the male
Radii were consistent with those reported for the femoral neck based on an analysis of longitudinal data for women\(^{15}\) and men\(^{16}\). This outcome suggested that there are biological factors that stimulate periosteal expansion in narrow bones, but either suppress or fail to stimulate periosteal expansion in wide bones.

Periosteal expansion is a critical structural change that helps maintain bone strength with aging,\(^ 56 – 58\) and is generally thought to be stimulated by bone loss, which occurs in the form of increased porosity for long bone diaphyses.\(^ 23\) However, the distance of pores to the geometric centroid may also affect how age-related increases in pore size affect whole-bone strength. This effect was captured by a new measure called the Cortical Pore Score, which we developed to assess the cumulative impact of individual pore sizes and their location on bone strength. To maintain strength with aging, wide bones theoretically need to show a greater amount of periosteal expansion compared with narrow bones because the large subcortical pores associated with age-related bone loss\(^ {23,29}\) are located proportionally further from the geometric centroid.\(^ {59}\) However, the opposite was found for the male radii: The wide subgroup showed a nonsignificant association between robustness and age, whereas the narrow subgroup showed a significant positive association (Fig. 3). Neither the amount nor the location of pores explained the differences in periosteal expansion between the narrow and wide subgroups. First, wide radii tended to have larger pores compared with narrow radii (Table 2), consistent with previous work.\(^ {17–20}\) Second, the two subgroups did not show different associations between porosity and age (Fig. 4), suggesting that the greater baseline porosity of wide bones did not confer greater age-related bone loss in the male radius. The age-related increase in porosity resulted from an increase in pore size, but not pore density, for both subgroups, consistent with work by

Table 3. Multivariate Regression Models Predicting Whole-Bone Strength (All Models \(p < 0.001\))

<table>
<thead>
<tr>
<th>Model</th>
<th>Action</th>
<th>Traits</th>
<th>(R)</th>
<th>(R^2)</th>
<th>Adj. (R^2)</th>
<th>Max VIFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial model</td>
<td>Age, ht, robust, Ct.Ar, PYD, tissue strength, MMR, (\log(\text{porosity})), (\log(\text{Xlinks}))</td>
<td>0.913</td>
<td>0.833</td>
<td>0.768</td>
<td>7.2</td>
</tr>
<tr>
<td>2</td>
<td>Remove (\log(\text{Xlinks}))</td>
<td>Age, ht, robust, Ct.Ar, PYD, tissue strength, MMR, (\log(\text{porosity}))</td>
<td>0.913</td>
<td>0.833</td>
<td>0.778</td>
<td>7.1</td>
</tr>
<tr>
<td>3</td>
<td>Remove Ct.Ar</td>
<td>Age, ht, robust, PYD, tissue strength, MMR, (\log(\text{porosity}))</td>
<td>0.911</td>
<td>0.830</td>
<td>0.782</td>
<td>3.4</td>
</tr>
<tr>
<td>4</td>
<td>Remove tissue-strength</td>
<td>Age, ht, robust, PYD, MMR, (\log(\text{porosity}))</td>
<td>0.918</td>
<td>0.843</td>
<td>0.809</td>
<td>2.8</td>
</tr>
<tr>
<td>5</td>
<td>Remove PYD</td>
<td>Age, ht, robust, MMR, (\log(\text{porosity}))</td>
<td>0.912</td>
<td>0.832</td>
<td>0.803</td>
<td>2.7</td>
</tr>
<tr>
<td>6</td>
<td>Replace MMR and porosity with Ct.TMD</td>
<td>Age, ht, robust, log(Ct.TMD)</td>
<td>0.958</td>
<td>0.917</td>
<td>0.907</td>
<td>1.6</td>
</tr>
</tbody>
</table>

VIFs = variance inflation factors; ht = height; Ct.Ar = cortical area; PYD = postyield deflection; MMR = mineral/matrix ratio; Ct.TMD = cortical tissue-mineral density.
The similar porosity–age regressions for the subgroups contradicted prior work, including our own, showing that bone width is positively associated with measures of resorption. Additional research is needed to understand how the association between remodeling and external size varies with anatomical site, sex, and age. Third, the age-related increase in porosity accounted for a greater fraction of the moment of inertia in wide bones (Fig 4F), confirming that the greater distance of the pores to the geometric centroid exacerbated the deleterious effects of porosity on strength. The greater CPS of wide radii may have contributed to the strength decline, but did not appear to stimulate periosteal expansion to offset bone loss. Thus, our subgroup analysis indicated that periosteal expansion may not be simply coupled to bone loss, as is generally thought.

Whole-bone strength is also influenced by tissue-level mechanical properties, which are defined by tissue composition and porosity. This was confirmed in the multivariate regression analysis. Tissue strength decreased with age in the wide but not narrow subgroup, although both subgroups showed similar declines in postyield strain. Raman spectroscopy identified compositional traits that showed similar correlations with age for both subgroups (mineral crystallinity, collagen disorder/order ratio, and lipid/matrix ratio) and traits that showed positive (MMR, hyp/pro ratio) or negative (Xlinks ratio) correlations with age in only one subgroup. The significant positive correlation between MMR and age for the narrow subgroup (Fig. 5) was consistent with the slightly lower midcortex porosity measures for the narrow subgroup (Fig. 4B), which may indicate a lower amount of remodeling in the region where Raman spectroscopy was conducted. In general, bone with low remodeling activity retains more complete mineralization of secondary bone. Thus, the age-related increase in mineralization in narrow bones appears to have offset the increase in overall porosity, resulting in similar tissue-strength values across the age range examined for this subgroup. The dependence of bone strength on collagen crosslink content, porosity, and mineralization could explain why whole-bone strength declined with age for the wide subgroup. The contribution of additional matrix (eg, advanced glycation endproducts) and microarchitectural parameters (eg, osteon size) on bone strength can be examined in future work. There are several clinical implications of the data that are worth noting. The lack of differences in strength between the narrow and wide subgroups for elderly males may help explain inconsistencies among studies reporting that individuals with fractures range from having more narrow bones to wider bones compared with nonfracture cohorts. Although further investigations are needed to better understand individual strength-decline trajectories and how they relate to fracture incidence, the concept that strength-decline trajectories differ among individuals could make it difficult to identify a single trait or a single combination of traits that predicts fracture risk across a population. The specific morphological and material changes underlying the different strength–age trajectories may provide targets for these treatment strategies. For example, treatments that suppress remodeling may benefit individuals with wide bones given that the further location of the pores from the geometric centroid may exacerbate the deleterious effects of porosity on strength. We stratified our donor samples into two subgroups based on height-adjusted robustness, not an underlying disease or fragility fracture status. We suspect that other factors that are known to influence bone strength and morphology within a single sex and ethnicity such as disease, weight change, estrogen replacement therapy use, and hormone levels may be superimposed on this underlying morphological effect and would contribute to the variation in strength within each subgroup. We were not able to test for these additional factors given the limited life-history information of the donors. Studying strength changes using longitudinal databases would be needed to refine these additional effects and to test for interactions with baseline external bone size.
The biomechanical mechanisms derived from this study are limited to how well trait–age regressions of cadaveric tissue reflect longitudinal changes in bone. As previously noted, the robustness–age regressions observed in the current study were consistent with those from longitudinal studies of the femoral neck, suggesting that the biomechanical mechanisms derived herein may provide important clues to interindividual differences in skeletal aging. The current study was limited to the radial diaphysis of white males, and it is unclear if similar strength–age trajectories and biomechanical mechanisms will be observed for other skeletal sites, women, or other ethnicities. Finally, the current study was powered to test for differences in strength–age regressions, which may have limited the power to detect significant differences in porosity. There was sufficient power to detect statistical differences among the primary outcome variables like strength, robustness, cortical area, and most of the tissue-level traits. However, a couple of the porosity variables showed borderline differences in y-intercepts between the narrow and wide subgroups (eg, midcortical porosity, CPS_planar/_transmitted). For these variables, a power analysis using a significance level of 0.05 and power of 0.8 confirmed that different sample sizes of 18 to 25 would be needed to detect significant differences between regressions for the narrow and wide subgroups. Thus, our study was appropriately powered for whole-bone strength but not for all of the porosity variables. In conclusion, our study showed that elderly white male radii arrived at similar low strength values through fundamentally different biomechanical mechanisms. This outcome provided evidence that more than one strength-decline trajectory exists within a single sex and ethnicity. The different biomechanical mechanisms illustrated in Fig. 7 argue that the associations between strength and morphology will vary among elderly individuals depending on their baseline external bone size and strength–decline trajectory, and that fracture-outcome studies may benefit from testing for multiple biomechanical pathways leading to fracture risk.

Disclosures

The authors have no conflicts of interest to declare.

Acknowledgments

Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (KJJ: AR065424, AR069620, AR068452; SHS: AR070903; DHK: T32DE007057; TLB: AR064244). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Authors’ roles: Study design and conception: KJJ, TLB, DHK, EMR, GM, SHS. Literature search: EMR, KJJ, GM. Data collection: EMR, DMP, FSW, AC, MC, AC, RWG, GM. Statistical analysis: KJJ, EMR, GM. Data interpretation: all authors. Writing the manuscript draft: EMR, KJJ, GM. Revisions and final approval of the article: all authors. Assurance of data integrity: EMR, KJJ, GM, DHK.

References

